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1. Introduction

Our interest i1s in computing equilibria for the Walrasian general
equilibrium market where there are a large number of goods (say, two
hundred) and a small number of traders (say, five). The production and
consumption sets are assumed to be closed polyhedral convex sets and
utilities are assumed to be piecewise linear and concave; the algorithm
is designed to take as much advantage of this "convex piecewise linear
structure' as our knowledge enables. More general models of trade with
production and consumption sets that are merely closed and convex and
with convex preference orderings in lieu of concave utilities can be
approximated very closely by our "convex piecewise linear model" of

trade, see, for example, Debreu [7], Kannai [16], and Mas-Colell [20].

Our approach to the problem is motivated from a number of sources,
namely, the attempt of Mantel {19] to solve the '"convex piecewise linear"
model of trade, the fixed point methods of Scarf [24] for computing
economic equilibria, a model of Mas-Colell's in [9] which shows that the

equilibria cannot, in general, be compute@ in a finite number of steps,

the existence proofs as those of Arrow and Hahn [1] Negishi [21] and

Shapley [25] which are based upon the household simplex rather than the

price simplex, the existence proof of Kreps [17] which uses the labeling
theorem of [8] and labels based upon payments, and last but not least, the
computational results of Ginsburgh and Waelbroeck [12,13,14]. The later
reported surprising convergence rates by using the simplex method together with/

in effect, manual adjustments of the weights on utilities to obtain an




approximate equilibrium via welfare optima, In a similar manner our
algorithm uses the simplex method, but uses new fixed point methods,
namely [8], to adjust these weights automatically and to thereby compute
an approximate equilibrium or show that the traders are not resource
related,

The model of trade we have adopted encompasses in a natural way
negative or zero prices and bankruptcy. Our treatment of bankruptcy
is in the sense of Arrow and Hahn [1]. Our development will utilize
the notion of quasi-equilibrium or compensated equilibrium as in
Debreu [5] and Arrow and Hahn [1].

The authors would like to express indebtedness to Gerard Debreu
and Robert Wilson for helpful discussions. Wilson [26] has recently
announced an approach for solving the "convex piecewise linear" model of
trade; our approach is quite different from his especially in view of
the fact that the methods were conceived over the same period amidst
considerable interaction,

It is assumed that the reader is familiar with the simplex method

and the duality theory of linear programming, see Dantzig [3].
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2. Traders, Goods, and the Market

Consider a market with n traders and m goods; let i and j

in v e‘[I, css, 0] and g in p.e'[l,_..., m] index the traders and

goods, respectively, We note that the use of the word goods is in a very

broad sense, see, for example, Debreu [4].

2

Each trader is endowed with a bundle of goods b1 (a 1 xm vector);

a sociology, technology, and productive capability Ai (an m x hy matr ix);

and a utility ey (a 1 xhy vector), Without access to the market,

each trader is modeled as a linear program

(1) m:x: c Xy
i
s/t: Ax, = b, x, >0

This linear program may be infeasible reflecting, for example, that
domestic agriculture may be insufficient to feed the population., By
convention we shall take the gth component of bi’ big’ to be positive,
zero, or negative according to whether the trader has a positive, zero,
or negative inventory of the gth good.

A price ﬂg for good g may be positive, zero, or negative,

Given access to goods of the market at prices nx = (“1’ — xm) trader

i 1is modeled as the linear program:
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max: Cc_.X

o ii
i
(2) s/t: Ax, = b+,
nyifo xizo

Again the trader attempts to maximize his utility, but now he is permitted
to buy and sell in the market to enhance his effort, The vector Y4 is
the vector of net trades of trader i with the rest of the market, and the
budget constraint Yy < 0 requires that he not spend more for goods than
he earns in the market, The program (2) may be infeasible or even yield
utility unbounded above,

For a given x and x, we shall refer to ny, = n(A;x; - bi)
as the (net) payments of trader i. According to whether the payments
are nonpositive (ny, < 0), zero (rryi = 0), or nonnegative (rryi > 0)
we shall say that trader i is within his budget, has balanced his budget,

or is bankrupt.

An equivalent statement of (2) is

5 i |
(3) i

s/t: yrAixi_<_rtbi -

Clearly X solves (3), if and only if (xi, yi) solves (2) where

P
R 1 B




So far it appears that our model permits only linear utility, but

we show in Section 6 that convex piecewise linear utilities are a special

case, Also in Section 6 we show that production is included even though

it does not appear in our model explicitly,




3. Quasi-Equilibria

Let us define our notion of a solution to the market namely a
quasi-equilibrium (with bankruptcy) (see, for example, the compensated
equilibrium of Arrow and Hahn [1]), By a partition @ U B of the
trader set v we mean that ¢ UB=v, aNB=PH, ¢ P, and B may

or may not be empty., Let x = (%), «en,y xn).

We define (&, B, X, 1) to be a quasi-equilibrium if
a) @ UPB partitions the trader set,
o ; e oL
b) x is feasible, that is, Zv Aixi = Zv bi and X, 2 o,
c) each & trader has nonpositive payments and subject to these

payments he has maximized his utility, that is, E(Aii - b,) <0, and

i
x, maximizes c x, subject to n(Aixi - bi)-s n(Aixi - bi) with
x, > 0, and

i-— 2

d) Each B trader has nonnegative payments and has minimized
his payments, that is, r(Ax, - bi)~2 0 and x, minimizes n(Aixi - b))
subject to xi.z 0.

Observe that both (&, B, kX, x1) and (@', B', X, 1) could be
quasi-equilibria with & £ Q'; the point being that minimizing payments
may have by coincidence maximized the utility subject to the budget or
vice versa,

If (@, B, x, 1) is a quasi-equilibrium, but (v, P, X, ) is

not, then we call (&, B, X, 1) a proper quasi-equilibrium. On the

other hand if (v, ﬁ, x, 1) 1is a quasi-equilibrium then we call (x, x)
an equilibrium; for emphasis,note that (i, x) 1is an equilibrium if
and only if x is feasible and each trader with ii has maximized his
utility subject to his budget,

s 5, TR, g, TP TS i 4




4
. Fundamental questions are:

i) When does an equilibrium exist?

i ii) How does one compute an equilibrium or show that it does not exist?

Current theory does not supply complete answers, but we shall cover the
major developments known to us,
In general not even a quasi-equilibrium exists much less an equilibrium,

The next three conditions guarantee the existence of a quasi-equilibrium.

W TR

-
-

I) Feasibility: We say the market is feasible, if there is an

x > 0 such that Zv Aixi = Zv bi' O

> II) Nonsatiation: We say that the market possess the nonsatiation

property, if each < contains at least one positive element, O

III) Finite Utility: We say that the market has finite utility,

if for each i the program

max: Cc.X

has a finite objective value, (O

If a quasi-equilibrium is to exist, clearly the market must be
feasible; the other two conditions, though not necessary, also seem

inoccuous., Each of these three conditions are easily checked,

B e T e T R R
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4 ‘ Assumption: Throughout the remainder of the paper we assume that
g v the market is feasibile (I), possess the nonsatiation property (II), and E
b |
e has finite utility (III). ;
A |
: i
E 3 In Section 5, we supply a constructive proof, in the limiting sense, %
{ ,
S R A
1 to the following theorem, é
| ;
. ¢
| s,
Theorem 1: A quasi-equilibrium exists, O f
¢
vt :
|
Observe that the price n of a quasi-equilibrium is nonzero; this )
follows from the nonsatiation assumption and the fact that @ is nonempty.
Suppose that trader i is individually feasible, that is, (1) is feasible,
}
<8 E and that (Q&,B,x,n) is a quasi-equilibrium; then trader i 1is not bankrupt,

that is, trader i is within his budget. Otherwise Ebi < 0 and hence,

with EAi‘Z 0 we see that (1) is not feasible. In general one cannot
conclude that an individually feasible trader is of & type.

The next lemma shows, in particular, that a quasi-equilibrium
without bankruptcy is Q-Pareto efficient and that an equilibrium is in

the core, In a quasi-equilibrium observe that an Q-trader cannot achieve

the same utility at a lower payment due to the nonsatiation assumption (II);

e e e A TR AP T B R R ST

also observe that trader i can be a PB-trader,if and only if EAi‘E 0,

1rAixi =0, and yrbi <o.

Lemma 2: 1f (&, B, x, 1) is a quasi-equilibrium, then there

does not exist an @cd BCcB, x4 >0 for i in au B, and 6i_>_1

T R AT AR YA T vy g

for i in B such that

.- o -t i -L'
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and

e, %, < ¢.x, for some i in «

Proof. If so, then n(A.x. - b.) >x(A %, - b.) for all i in
= 1 17 - iTi i
@ and with a strict relation for some i in Q. Since 5, R(Aixi - b.)
i

> ﬁ(Aiii - b,) for each B-trader we have
"(g (A =) + g ailes, - 501 =8

which contradicts the feasibility of X for i in @l B. O

The existence of a proper quasi-equilibrum might lead one to

believe that an equilibrium does not exist, For consider’ the O~traders

are within their budgets, and the f-traders have foresaken their utilities
and focused on balancing their budgets which they are just able to do,
if at all, The following example illustrates that the model may have

both a proper quasi-equilibrium and an equilibrium,




e

e, = (1, 0) e, = (1)
(’1 )L 0
A, =
o T
2 0
b, = b
E (1) 2{-1>

One can check that il =(1, 1), x, =1 and & = (1, -1) is an equilibrium,

However & = (1}, B = (2}, il = {8, 0). %

>
I}

, and 7= (1,0} is =
proper quasi-equilibrium; the B-trader has minimized his payments and
has thereby managed to balance his budget; however, he has not maximized
his utility subject to his budget.

Computation of an approximate quasi-equilibrium in a finite number
of steps involves some technical difficulties that we have been unable to
surmount, We are thus lead to the "indirectly resource related" notion

of Arrow and Hahn [1].

(IV) Resource Related: The traders of the market are defined to

be (indirectly) resource related if no subset of traders is satiated by
the goods owned and produced by the remaining traders, More precisely,

we say the traders are resource related if for any x with

10
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and any partitions @ U B of the traders with B £ f, there exists numbers

61_2 1 for i €B and x 2 0 such that

i) b Ajx, + 0 SiAixi=§b' +Y ©.b

a B ST
ii) c;¥; Seyx; forall i in @,
iii) ek <e.x for somedi in @ O
| i

Theorem 3: 1If the traders are resource related, then an

equilibrium exists.

Proof: There is a quasi-equilibrium (&, B, X, x)

Theorem 1. If B £ P, then according to Lemma 2, the resource related

condition fails for (@&, B, . O

The algorithm described in Section 7 will compute (in a finite

number of steps) an approximate equilibrium or show that the resource

related condition (IV) fails,

11
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L. The Aggregate Program with Weighted Objective

For our proof and algorithms we consider, in the spirit of welfare
economics, the aggregated production capability of the market together
with an objective function obtained by weighting the traders
utilities,

Let S be the (n-1)-simplex {(Gl, iy en)_z 0 3 Zv 6; = 13,

For 6 € S consider the linear program:

f(8) = m:x: % 6,c,%;
(%) s/t: ¥ Aixi =5 bi x>0
v v

We observe that f 1is a finite continuous piecewise linear convex function

on S,
The dual of (4) is
min (¥ bi)
T v
(5)
s/t: A, > 6.c, iev

For any 6 € S we know that the optimal objective values of (4) and (5)

are equal and finite,

12
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We define three point to set maps, namely X : S —;RZhi’ nes —»Rm,

and P :S—R", For each 6 €S, X(0) is defined to be the set of optimal

solutions to (4), I(6) is defined to be the set of optimal solutions to

(5), and P(6) 1is defined to be the set of payment vectors p(x,r,6)
n(Ax, - b;)

P(x,n,8) = 3

n(Anxn - bn)

where x € X(6) and & € 1[(6). We observe that 6,c,%; = A x, for

any i€ v, x€ X(6), and n € [I(6). Hence p(x,n,0) 1is also of form

Glclx1 - nbl

: ' Gncnxn - nbn j
5 1
=%’ for x € X(6) and x € (). If p = (pl’ -++y P)) € P(6), then clearly
,&i Lp,=0.
e v

fﬁ‘k Lemma 4: Assume x and 7 are in X(8) and me). I1f .

-

'«“{..“ pi(i,;,é‘) <0 for 8, >0 and p;(x,7,8) > 0 for 8, = 0, then

% (&, B, X, 1) 1is a quasi-equilibrium where & - g ¢ éi > 0} and

' i : &, = 0},

- B={1:8, =0}

13
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Proof: Obviously & U B is a partition of v and x is feasible.

For i in & we have xA, > @.c., and A .x, - 0.¢.x.. If
i-"11 ii W B |

then g.c.x. = A .x. > g.c.x. and lLence

7A.x, - tb, < wA.x. - b
o b § - ii i’ iii e SR g |

i

trader i has optimized subject to his payment level, For i in B
we have A, >0, 1A X, = 0, and xb, <0. O

In particular, if we can prove that there is a 9 >0 for which
P(6) contains a zero, then we have obtained existence of an equilibrium,
Note that if q € P(6), then the task of computing an x € X(6) and
n € I(6) with p(x,n,6) = q is merely a matter of solving a linear
program,

The next theorem describes the continuity properties of X, I, and
P, A point to set map, say X, is called upper-semi-continuous if ek
tends to 6, xk in x(ek), and xk tends to x, imply x 1is in X(8).
A point to set map, say I, is called lower semi-continuous, if n in
n(6) and ek tends to 6 imply there exist nk in n(ek) with
nk tending to nx. A map which is both upper and lower semi-continuous
is called continuous. We shall need the following lemma which can be
proved using the fact that the objective of a linear program is a continuous

k k

function of its right hand side over the feasible range; let DBz < d

where k = 1, 2 .., be a sequence of inequality systems in the variable

I s !
Lemma 5: If D is a diagonal matrix, p¥ tends to D , D has
s : k e k k
a positive diagonal, d tends to d , and D"Bz < d° has a solution for
00 (o]
k = 1, 2, T then D Bz < d has a snlution,and for any such solution

z'  there is a sequence zk tending to 2z with Dszk < dk. a

L4
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Lemma 6: For each ¢ the sets X(6), I(6), and P(6) are non-

empty, convex, and closed, X and P are upper semi-continuous, and

il

is continuous,

Proof: We shall only prove that P is upper semi-continuous;

the remaining facts are much easier to establish, Assuming pk € P(ek),

pk —>pm’ and ek - 8" we need to show that pm € P(Ow). Select

xk € x(ek) and nk € n(ek) so that p(xk, nk, ek) = pk. If xk ax

67) = p» and

the result is established, The difficulty arises because xk and or

and x* ->n”, then x" € X(6 ), n" € (6 ) and p(x”, ",

e may not converge,
Gy LR k :
For k=12, ,,,, » the condition that p is in P(g ) is

equivalent to the requirement that (6k) have a solution

(ai) ezc.x. - b, = p

i1 i x 2 i
(6k) v v
() (T b)) = £(69
v
k :
(d) nA, > 6.¢c, , 1€v.,

Observe that by summing each (ai) and (c) we get Zv eicixi = f(ek)

since ZV p: =0 for k=1, 8, .ov; =
Now observe that by the assumption of finite utility we cannot have

k
%

e

k _k
C X, = o, and consequently, 6 we cannot have Oic,x. - -0,

15
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Pick a subsequence of k so that each 6: and etcix: converges,

Now apply Lemma 5 to (6k) where D=1, x is set equal to =

- and where

2

only n 1is regarded as a variable,

We conclude that there is a sequence ;k tending to 7. where

(xk, ;k) solves (6k) for k=1, 2, .,, . If 9: -0, then clearly
Grcix: — 0. Now apply the Lemma 5 to the system formed by the (aij) with
9: >0 and (b) where x = ;k, x 1is the only variable and
J
6
|
Dk = 3 .
6
12

We get a sequence ;k 5% solving the reduced system for

k=1 2, ..., . We now have a solution (;k, ;k) to (6k) tending to
(;m, 7)) and the result is complete, a

Existential and computational difficulties are caused by the fact
that the X(6), 1(6), and P(6) may be unbounded and we move to define
selections 2(6), ﬁ(e), and ?(9) from them, Given two f-vectors u
and v we say that u is lexico greater than v, if there is an

i=1 £ such that

9 ey

16
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u, = Vv for 1< j<i-l E

Given a set of u's the lexico maximum (resp., minimum) is the u which

4 i is greatest (resp, least) in this ordering. r

3 j Let 2(9) be the unique solution to the (lexico) linear program

o
lexico max: (% 6,8, %s - X)
s/t: § Ax, =Tb, , x>0.

Here one first maximizes % Gicixi, then minimizes xll’ then x12,

etc,, and finally x Obviously 2(6) is an element of X(¢€).

.y nh °
n

Furthermore, it is easily verified that ﬁ(e) uses linearly independent
colums, that is, the columns of (Al’ g An) corresponding to

positive elements of ﬁ(e) are linearly independent, It follows that

ﬁ(s) = [ﬁ(e) : 6 €8} is finite, &

Select Ao an m X ho matrix with ho‘z 0 so that (AO’ cxag An)

has rank m and so that

Agxg + L Axy = [ b,
\Y \Y

»
V
o

implies Xy = 0. Such an Ao is easily computed with elementary row

operations,

17
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Let [e] be the column vector (e, ea, o €™ and let B be

any m X m submatrix formed using linearly independent columns of

(Ao, iy An)' For each 6 define ?L(G) to be the unique solution to

the dual of

s/t: Agx, + % Ax, = % b, + Bl €]

for all small € > 0 where the variables are X and x, Equivalently,

~
n(6) is defined to be the unique solution to the (lexico) linear

program

lexico min: (n(L bi)’ nB)
v

s/t: :rAOZ 0

nAiZGici' iev .

It follows that ?1(9) is in TI(6) and that /I;(a) is in P(g) where

we define B(8) to be p(X(6), Ti(6), ).

N
Lemma 7: The function I : S Y is continuous and nonzero.

18
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Proof. Tka) % b, = £(6) 1is a continuous function of ¢, by

we— v
the same reasoning, ﬁ(G)B is a continuous function of 6, and it follows
that T is continuous. Since 1(8) Ai > 8,cy for all 1, n() ¥ 0. O

N ey ey
Since X(S) and I(S) are bounded, P(S) is bounded. In general
N A
X and P are not continuous,
Finally, we observe that ﬁ(e) and ﬁ(e) can be computed by
P appropriate application of the simplex method to the (lexico) linear

program

 lexico max: (I 6,c.x,, -x)
v

s/t: ono + % Aixi =b

where b is perturbed to b + B[e] for purposes of degeneracy resolu-

B¥ tion,




b=
E

YT

5. Existences of Quasi-Equilibria

Using the function ?, the proper labeling theorem of [8], and Lemma 4
we prove the existence of a quasi-equilibrium,

Let £ : S —)Rn-l be a function, continuous or not, on the
(n-1)-simplex S. If the origin of Rn-lis in the convex hull of 2(C) for a
subset C of S we say that C is g-complete, If every neighborhood

of ¢ 1is an f-complete set we call 6 an g-complete point, The proof for

the following result is found in [6] or [8]; this result can be regarded as

equivalent to the Brouwer fixed point theorems,

Lemma 8: If the vertex set of S is fg-complete and no

(n-2)-face of S is £-complete, then there is an f-complete point, T

Our next step is to define a labeling £ : § -»(z € R" : ZV z, 0}

related to our market., For 6 on the boundary of S define £(€) by

6 if 91 >0
2,(0) =

1
'; if 6i=0

where o is the number of 1i's for which 6; = 0. For ¢ in the interior
o)
of S define #4(6) to be P(6).
We see that the vertex set of S is f-complete and that no

(n-2)-face of S is E-complete, and we may conclude that there is an

£-complete point.

20
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Lemma 9: For each £-complete point § there is 2 pec P(8)

with p <0 if § >0 and Py 20 1if § =0,

Proof: From the definition of an £-complete point it follows

that there is a subsequence of Gik

ik

such that ¢ — 9 for each i in v as k = 1, 2, ... tends to w

in S and Aik‘z O for i in v

and
T2 aelS .0
Vv
5T O |
v
for %a 1.8

By rearranging terms and selecting subsequences if necessary, we

may assume that Gik >0 for i in ¢ and eik $0 for i in n

where § U n partitions v, Further we may assume that Aik —;xi

for 1 in w, z(eik) —api for i in {, and z(eik) —»qi for 1 in

n as k=1 2, .

sy ++. tends to « where

pl € 2(3)
and
i <0 -
qj_ if 9j=0,
ad>o0 if 8, >0
J J y
We have

21
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kai+27\iqi=o

¢ n

e el

Divide by s = ZC Ai and use the convexity of P(8) to get p in P(6)

| with
| Py >0 if GJ =0,
By | < £ B0,
; Py <0 if 6;>0 o
Putting together Lemmas 4, 8, and 9 we have a proof of Theorem 1, b
4 i namely, a quasi-equilibrium exists, Lemma 4 also yields: g
f'g }
k Lemma 10: If there is an fg-complete & with 8 > O, then there .
is an equilibrium, O
f
22
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6. Piecewise Linear Utility and Production

Assuming production and consumption sets are polyhedral convex
sets and that preferences are reflected in a concave piecewise linear
utility function we shall show that the traditional model of competitive
equilibrium as described, for example, by Debreu [4L is a special case
of our model as stated in Sections 2 and 3, We shall incorporate pro-
duction using a construction attributed to Rader [22],

Let us suppose that there are o goods in the (traditional)

m

market, Let the production set Qo be a set in R " of form
(B 2r D =g B F0f

0% ° "o’0 " %o %o

Note that any closed polyhedral convex set can be represented in this

manner. It is assumed that disposal is free
< s G
9% = 0 implies q, is in Q
that production in the large is not reversible
(g €Qy : 95 2 0} is bounded,

Given a set of prices o for the goods, the profit 9% is to be

maximized over 9% in QO'

23




Let us suppose that there are n consumers, We assume that the
"o
consumption set Qi of consumer i is a set in R ° of form

(B2 : D3 =4, 2 >0} .

Each consumer is assumed to have an endowment of goods wi and a cencave

piecewise linear utility function Ui over the consumption set defined

by

U.(q) = min ¢, .q
i
ey 7

where By is a finite set, Observe that any concave piecewise linear
utility function can be represented inthis form, Further we suppose that

each consumer owns a fraction ri-z 0 of the production facility where

Zy 7y = L.

We assume that Qi has a lower bound
i >
q; in Qi implies 2

that there is no satiation consumption

q; in Qi implies there is a

q; in Q1 with U(qi) > U(qi)
and that there is a qi in Qi such that 9 < wi,
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Given this statement of elements of the model we now recast it
into the form of Sections 2 and 3,

Given prices n, consumer i's problem is to

max: Ui(qi)
s/t: q € Qi

<
B = %ghy T T4 %o
where Ty T aO is consumer i's income from the production and where

aO maximizes 9% subject to % € Qo. This problem of consumer i

can be restated as

max: v

1
s/ t: 1S ¢5% i€ uy
Bigg = 4y
Dizi = di ” 21-2 0
Eo%o = %
Dozo = do & 2y >0
0

09 S To¥y *+ oY%

a are v z z d = i

where the variables e i» 945 %, %95 94, and q Observe that if
the program has a solution (in view of the nonsatiation assumption) or
if the consumer minimizes his payments, then the production facility is

operated optimally,

) N




We can restate consumer 1i's problem again as

max: v - v,
g i i
. +, - =
s/t. vi vi + sj = cij E1 z1 5 jE By
vi>0 vi>0, s, >0
1 = =¥ =% %=
B, =T8N -
Dz, =4d, , z, >0
D5y = 4y 2y > 0
noyigo

where the variables are vt z

1’ vi’ sj}
all these variables except yi to form the variable X, and defining

A:, Ai, b;, bi, and 4 appropriately, we can, again, restate the

ir Zor and Yy Aggregating

consumers problem as

max: Cixi
s/t Alx, =B, + y
(s ¢ i i
2 2
Ax, = b x, >0
¥y =0
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2
Now assuming Ai has m, rows we define Ai and bi to be the

matrix and vector

1 1
< —_—
Ai Rows 1 to T bi
0 (o}
0 0
> i-1 i >
A = Rows { L myl to T m —>1 b,
i i/ i i
(o} 0
0 (0]
b B
Hence, in the model of Sections 2 and 3 there are m = 28 m,
goods, but only m, of them are traded at a quasi-equilibrium in view

of the feasibility requirement,
Since there is qi.s v, and disposal is free, the market is

feasible (I). Clearly c, has a positive component and insatiation

i
(IT) follows. Since each consumption set is bounded below and the pro-
duction is irreversible we obtain finite utility (III). Thus the model
has a quasi-equilibrium.

At a quasi-equilibrium obviously the prices « are nonnegative

0
and nonzero. Since each trader has a 9y < Wi the trader can easily im-
plement a surplus budget. Thus we have, in fact, an equilibrium. By making

assumptions as, for example, in Bergstrom [2] or Hart and Kuhn (15],

equilibria would not necessarily yield nonnegative prices,
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7. The Algorithm and ¢-Equilibria

Assuming feasibility (I), insatiation (II), and finite utility (III)
we have shown existence of a quasi-equilibrium, and our attention is now
turned to computing. In general one cannot compute in a finite number
of steps (additions, multiplications, and branches on signs) a quasi-

equilibrium, for there are markets with rational data (A, b, c)

where all quasi-equilibria have irrational components, see [9] and Section 8.
However, if there are only two traders (n = 2), then a quasi-equilibrium
can be computed in a finite number of steps, see Gale [10]. The

next logical attempt would be to compute in a finite number of steps an
approximate quasi-equilibrium, However we have not been able to devise

an algorithm and a satisfactory notion of an approximate quasi-equilibrium
where any degree of efficiency could be anticipated. We proceed to

describe an approximate equilibrium and an algorithm which, in a finite
number of steps, computes an approximate equilibrium or computes

(o, B, x) showing that the traders are not resource related.

Our notion of an approximate equilibrium is that of an e-equilibrium.
Towards normalizing the prices we let [w| = ZT |ni| . Observe that if
(x, ™) is an e-equilibrium, then so is (x, wt) for any w > 0 and, in
particular, for w = l;l—l . We call (x, m) an e-equilibrium if

a) x is feasible, that is Zv Aixi = Zv b..

b) Each trader is within € of balancing his budget,6 that is,
RAiii Snby + [7]e.

c) Each trader is within € of optimizing subject to his budget,

that is, ¢ X, + € exceeds c.x for all x, >0 with nA.x 5 nb

11 ii i : i 4 i
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Our algorithm consists of three parts, a scheme for generating
£-complete sets, a termination rule which detects an €-equilibrium,
and a termination rule which detects that the traders are not resource

related, The scheme for generating the f-complete sets is prescribed in

(6] or [8] and we shall only sketch it here. Using the labeling of

: 1
Section 5, the scheme generates a sequence of f-complete sets © 92

= PR
1k

where Gk w 0 coe; Gnk} © S, the diameter of the 9k's tend to zero

as k tends to infinity, and 9k+1 ~ ek contains one element for all k.

Given G at iteration k a 6% is computed, a label E(Gk)

9k+ 1

is computed, a pivot is made as in the simplex method, and is

thus determined. Thus if the Gk is interior to S, the aggregate

linear program (4) must be solved to compute z(ek). The presumption 1is

that after the ®k's get small the solution of the aggregate program

for Gk is easily obtained by using the simplex method to post optimize

from ek'l. Also we note that the aggregate linear program will most

likely have much special structure thereby lending it to the vast store

of large scale linear programming techniques, see Geoffrion [11] and
Lasdon [18].
If ®k is interior to S, then 1et£ing xjk equal ﬁ(ejk) and

-l equal ﬁ(ejk) we have

(8) by [njk Ai xik - njk bi] Rjk =0,
jev
where xjk_z 0 and Zv Ajk = 1, Define nk =7 njk kjk, xk = ) xjk ka,

v v

and & -3 oI\

We shall introduce two termination rules, The first detects an
€-equilibrium and the second detects that the traders are not resource
related,
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Termination Rule 1: For a given € >0 if G is interior to

S and both
k. .k k jk _ k jk
(ei - Gi)cixi (" - m) Ai X3
and Kk
k
6 =

have an absolute value of € or less for all i and j in v, then

s

terminate the algorithm, O

Lemma 11: If the algorithm terminates with Rule 1 at step k, then

) W TR €-equilibrium,
b )

Proof: Since Zv A1 xik = Zv bi we have Zv Aiii = Ev bi and

we see that x is feasible. Next it must be shown that each trader is
within € of meeting his budget and within ¢ of optimizing,

From (8) we have

T e (x 32y, %o 3k 129% 0
J

or

or finally

that is, each trader is within ¢ of meeting his budget,
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jk _ jk

§ " =B "

; and letting 2= ¢ we have

A x
i

2 i jk _jk jk
5, [(8; + (0] -8 e x- b1 0* C0
]
or
s TR g jk - jk . jk
6, ¢;X; = b, + ? (9i - 61) ey A
or finally
nb
- i
cixiz_e—--e .
i
We have x3%a, > ejkc and hence A, > ¢£.c Thus at prices 75 for
s i S i "11°
a trader to meet his budget we have nAixi.S nbi, hence 91°1x1-5 nbi or
b
i
cixis_e_—- .
i

Therefore, given his budget, trader i 1is within ¢ of optimizing., O

We regard & as a cluster point of the @k if every neighborhood
of ©® contains infinitely many of the ek. Of course, the sequence @k

has at least one cluster point,
Lemma 12: Let € be given and assume that the sequence of

f-complete sets ek has at least one cluster point interior to 8.

Then the algorithm will terminate after a finite number of steps,

Sk
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Proof: A k occurs for which Rule 1 will terminate the algorithm,
(if Rule 2 has not already) since the xjk's come from a finite set 2(8),
A

II 1is continuous and nonzero, the diameter of G# tends to zero, and

Gk has a cluster point interior to S. O

For the second termination rule we say that 9k is within ¢ of
the B-face if 32k<§ € forall i in B and j in v, Let K be an
infinite subsequence, For 6 in S let us define y(6) to be the set
of (i,j) such that

(o) a By v

% Gl Mt |

Termination Rule 2: Let ©® and the subsequence K be given,

If k is in K, solve the following linear program for all (B, y(8))

such that ek is within & of the B-face and 8 is in ek.

max: 2z

s/ti A= 6, (1,3) € r(8)
nAg > 6yc (i,3) £ r(®)
6, =0 iep
nb, <0 iep
6, >z 1€8

T e —

—

k
i
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The variables are 2z, 0, and x. If the optimal 2z is positive, terminate

the algorithm,

Lemma 13: If the algorithm terminates with Rule 2, the traders

are not resource related,

Proof: If the system has a solution then we have a 6 in the
boundaryof S and n in II(6) where 6, =0 implies nb, < 0. Hence

the following lemma applies. a

Lemma 14: For fixed 6 in the boundary of S and x in 1(6)

suppose that 6i = 0 implies “bi.f 0. Then the traders are not resource

related,

and x ¢ X(6).

)

Proof: Let = {i : 8; >0}, = {% ¢ 9i = 0}

1f 6112 1 for i in B and x >0 satisfies

TAx +785Ax =30, +1 5,0,
a ii B iii a i 8 ii

we have




e .

=Y nb, + 2 8,xb, - Y 5 A x
a i Bii -Biii 1

<Y nb, + 3 ub
a i B i

]
Q™M™

e v - :
ﬂAixi = g eicixi g 1

Theorem 15: Let ¢ > 0, >0, and K be given, Then the

algorithms terminates after a finite number of steps with an e-equilibrium

or a (a, B, x) showing the traders are not resource related,

Proof: In view of Rule 1 we can assume that G does not have
any cluster points interior to S, Clearly y(S) 1is a finite set and
®&n) = (6 : y(6) = n} 1is a closed polyhedral convex set for any 1 in
r(S). Hence the ©(n)'s form a finite cover of S. Thus if Rule 2 is
applied for some n in y(S) infinitely often,then ©(n) contains a
cluster point 8 of the @k sequence, Suppose ® lies in the p-face,
then,in fact,Rule 2 would have terminated the algorithm for the program
(B,n) the first time n was encountered, since ® yields a quasi-

equilibrium, O

3k
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Obviously, if K is taken as the set of integers and & is

et A s e

large or if v is large, implementations of Rule 2 is prohibitively |3
burdensome, The idea is, however, to determine what f-face contains | ]
in its interior a cluster point of the Bk and then to run the test

ever-so-often for different r(é) as the ak get close to the pB-face,.

| Note that if the payments vector p(x, n, 6) for each 6 in ek
is based upon the same x, then (x, n) is an equilibrium where
- T=7 2* njk, Also, since the sequence X(Gk“'ek-l) for k=2, 3, ...
contains only finitely many terms, at some iteration one might be able
to guess those terms which are in x(ék) infinitely often. In this case

i } one can implement a special "tail" routine in which the aggregate linear

program and its dual is not resolved.

P

————— m
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8. An Example

A preliminary version of the algorithm of Section 7 has been pro-
grammed by D. Solow and used to compute an e-equilibrium of Mas-Colell's
pure trade model of [9]. We first describe the model and then the com-
putational results.

The trade model has three players and two goods. Each trader

has one unit of each good and the utility functions are, respectively,

min(x,2y)
min(2x,y)

min(4x,5y)

where x and y are the quantities of the two goods consumed.
Note that equilibrium prices of this model are irrational. Recasting
the problem into our format we have I (1 0000 0),

bl = b2 = b3 =(11000000)

1 1 1
5 2 =
2
A7 0 0
A, = A. = A. =
1 3 2 Ag 3 0
2
0 0 A3
1 01000 2_[1-2 010
Al-(oo1oo Sh %t 01 0 4
2 1-1 010 AZ_./1-4010
M* 1 0-2 012 3 '\1 0-5 0 1

and each Ai is © %X O
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The computational results are summarized in the following table
¥ where k 1s the iteration number, € is that of the e-equilibrium,
and s-indicates the cumulative number of simplex pivots required to

solve the aggregate linear program (including Phase I for initialization).

k € s

k. 3 = 22
. | 7 - 23
11 10.286 27

14 3.7894 30

/ 17 1.3924 32

22 69444 33

gl 26 .33640 34
! 30 .16778 35

34 .08327 37

38 .04146 40

41 .02072 41

45 .00280 43

A 49 .00632 44
! 53 .00258 46
57 .0UL2Y 48

63 .00065 49

67 .00032 53

70 .00016 55

73 .00008 56
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Hence, for example, a (.00008)-equilibrium was computed with 56 simplex
pivots and 73 iterations.

The overall run time was about four-tenths of a second on an
IBM 370/168. The computation behaved essentially as expected and neither
confirms or denies that the algorithm is a practical device for models
in the target area of five traders and two hundred goods. Applications
to more serious problems will be reported upon at a later date.

Observe that the convergence rate is linear in the tail wherein
the error is halfed every 4 or so iterations. If the vectors which
appear in U X(ék) infinitely often can be identified, then quadratic

convergence can be obtained by using Newton's method or, for example,

Saigal [23].
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